Fish Touching🐟🎣

Bezout's Identity

Jul 17, 2023

# Bezout’s Identity

Bézout’s identity — Let a and b be  integers with  greatest common divisor d. Then there exist integers x and y such that ax + by = d. Moreover, the integers of the form az + bt are exactly the multiples of d.
Here the greatest common divisor of 0 and 0 is taken to be 0. The integers x and y are called Bézout coefficients for (ab); they are not unique. A pair of Bézout coefficients can be computed by the  extended Euclidean algorithm

Let d = gcd(a, b). We will show that:

  1. $d|m$;
  2. m is a common divisor of a and b.