Series
Used in: Expectation
# The Geometric Series
$\sum _ {i=0}^ {\infty }$$\alpha ^ {i}$ =1+$\alpha$ +$\alpha ^ {2}$ +$\cdots$ =$\frac{1}{1-a}$ for$|a| < 1$
# Infinite Series
Needs to be well-defined
Fact: limit exists and independent of order of summation if $\sum _ {i=1}^ {\infty }$$|a_ {i}|$<$\infty$
The order of summation may matter